AD-A066 240 HONEYWELL INC MINNEAPOLIS MINN SYSTEMS AND RESEARCH =--ETC F/6 17/5
PROTOTYPE AUTOMATIC TARGET SCREENER. (U)
JAN 79 D E SOLAND: M 0 SCHROEDERr R C FITCH DAAK70=77=C=0248

LINCLASSIFIFD 79SRCY NL




ADA066240

~ .‘_—..‘,

FILE COPY]

T —— —— .

0DC

Avbal=z4 S

PROTOTYPE AUTOMATIC TARGET SCREENER

by

D.E. Soland
M.0. Schroeder m [
D.V. Serreyn

T.6. Kopet

8 January 1979

Quarterly Report for Period
1 October 1978 — 31 December 1978

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

Night Vision and Electro-optics Laboratory
Fort Belvoir, Virginia 22060

Honeywell
SYSTEMS & RESEARCH CENTER

2600 RIDGWAY PARKWAY
MINNEAPOLIS, MINNESOTA 55413




e Sl itantibinl Lo <

TP

"The views, opinions, and/or findings contained in this report are those of
the authors and should not be construed as an official department of the Army

position, policy, or decision, unless so designated by other documentations. "




_!_‘ndussj tijml

SECURITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED)

READ INSTRUCTIONS

vL/TT A3Y 891-OH

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOV'T ACCESSION NUMBER * IPIENT'S CATALOG NUMBER
(//
4, TITLE (AND SUBTITLE) e - - l S >
I \ Quarterly Prog.ess Reperte
PROTOTYPE AUTOMATIC TARGET SCREENER 1 Oct - 31 Decommeemt978 -
S 79SRC4

;l CONTRACT OR GRANT NUMBER(S)

)
A I
e

M. O./Schroeder, T. G. Kopet | (1 < JDAAKTB-77-C-p24s]

7. AU SV ————— —
D.E. 7301;1:1(1) " D. V./Serreyn
/

R. C./Fitch. o B

, : , R R £ R e TASK ARER
Honeywell Systems and Research Center I (T
2600 Ridgway Parkway * /C? 1'“1«:26371,51)1{16714 010CT
Minneapolis, Minnesota 55413 | Vs S -

11. CONTROLLING OFFICE NAME/ADDRESS 12. REPORT DATE | _/ [/
Night Vision and Electro-Optics Laboratory January 8, 1979 ' ; /
Fort Belvoir, Virginia 22060 ’3'5"‘6“”““0‘ EAGES ' =

TA_.—MONITORING AGENCY NAME/ADDRESS (IF DI N CONT. O .) v URITY CLASSIFICATION (O

: / Unclassified /
5 R : 752 DECLASSIFICATION DOW

16. DISTRIBUTION STATEMENT (CF THIS REPORT)
Approved for public release, distribution unlimited

17. NISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FRCM REPORT)

18. SUPPLEMENTARY NOTES

19. KEY WORDS ( CONTINUE ON REVERSE SIDE |F NECESSARY AND IDENTIFY BY BLOCK NUMBER)

Infrared Target recognition Image enhancement
I'LIR Pattern recognition

Target Cueing Image processing

Target screening Real time

20 ABSTRACT (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)
This report is the fifth quarterly progress report for contract DAAK70-77-C-0248,
Prototype Automatic Target Screener. The objective of the effort is to design an
automatic target screener to be used with thermal imaging systems employing

common module components. __
\

DD FORM 1473 EDITION OF 1 NOV 55 IS OBSOLETE e
1 JAN 73 Unclassified

o [

v 1Y%

/ " s - Z/ SECURITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED)
: / \/ \_j 7
\ ]




.

S

—

bty 72 e e S S

Section

I

II

III

v

A%

CONTENTS [

INTRODUCTION AND SUMMARY

HARDWARE DESIGN
Status of Modules

System Synchronization and Timing

py

DSTRTIGH 4198 3 10 e

AT
S LIAL

I

Sync Separation and Video Switching

System Timing Generator

Writable Control Store

EDGE CIRCUIT CHECKOUT

SOFTWARE

CPUl Firmware
Bin Matching
Flow Chart
Bin Matching Summary

Microinstruction Format
Execution Time Estimates

CPU2 Software

PLANS FOR THE NEXT REPORTING PERIOD

APPENDIX A CPU2 SOFTWARE MODULE DESCRIPTIONS

iii

Page

21

23

28

28
29
36
36

39
41

42

47




Figure

10
11
12

13

14
15
16
17

18

LIST OF ILLUSTRATIONS

Sync Separation and Video Switching Block Diagram
Basic Sync Signals Generated

System Timing Generator Block Diagram
Typical Horizontal Timing Waveforms
Horizontal Timing Generator

Typical Vertical Timing Waveforms
CPU1/CPU2 Interface

MDS Writable Control Store

Video Input

High Pass Filtered Video (Edge)

Absolute Value of High Pass Filtered Video
Video of Figure 11 Integrated Across Each Line

Video of Figure 11 Integrated, Sampled at End of Line,
and Held

Edge Board Output (High Threshold Settings)
Edge Output (Lowered Threshold Settings)
Edge Output Superimposed on Input

Interval Data Format

Flow Chart of Bin Matching Algorithm

iv

Page

11
13
14
17
20
22
24
24
25

25

26
26
27
27
30

37-38




LIST OF ILLUSTRATIONS (concluded)

Figure Page
19 Modified CPUl Microinstruction Format ( Programming
Model) 40
| 20 CPU2 Hierarchy of Software Modules 44




. L

Table

LIST OF TABLES

Status of PATS Hardware (Percentage Completed)
PATS MUX Output Switch Selection

Monitor MUX Output Switch Selection

LAGBC MUX Output Switch Selection

Horizontal PROM Bit Format

Vertical PROM Bit Format

Format of Bin Data Block

CPU2 Software Used Primarily for Diagnostics

Other CPU2 Software

vi

Page

15
18
33
43

43




SECTION I

INTRODUCTION AND SUMMARY

This is the fifth quarterly technical progress report for contract number
DAAK70-77-C-0248, Prototype Automatic Target Screener (PATS). The
first two quarterly reports documented the Phase I design study. The
third quarterly report included a description of the final target classifier
design for the target data base currently available and the results of the
hardware and CPUl1 software system design tasks. This report continues
the description of subsystem design details and the status of hardware
fabrication and software coding and presents results of checkout of the
edge circuit subassembly, the first subsystem to be completed and checked

out. This report covers the period from 1 October to 31 December, 1978.

The program objective is to produce a design for an automatic target
screener. The screener will reduce the task loading on the thermal imager
operator by detecting and recognizing a limited set of high-priority targets

at ranges comparable to or greater than those for an unassisted observer.

A second objective is to provide enhancement of the video presentation to

the operator. The image enhancement includes (1) automatic gain/brightness
control to relieve the operator of the necessity to continually adjust the
display gain and brightness controls and (2) DC restoration to eliminate

artifacts resulting from ac coupling of the infrared (IR) detectors.

Image enhancement will also include local area gain and brightness control
to enhance local variations of contrast and compress the overall scene

dynamic range to match that of the display. This circuitry has been




—

completed, and examples of its performance on videotaped thermal image
data were included, with the circuit description, in the first quarterly

report,

The DC restoration image enhancement circuit eliminates the streaking
associated with loss of line-to-line correlation on the displayed image

because of the ac coupling of the detector channels.

This report consists of five sections. Section II describes further results
of detailed circuit designs. Section III includes a description and results
of the edge circuit checkout. Section IV summarizes the status of the
software design and coding tasks, including a description of the functions to
be implemented in higher order language code in CPU2. These functions
include diagnostic routines for system integration and checkout as well as
functional routines as part of the PATS operational system. Section V

summarizes plans for the next reporting period.

wll



i e

SECTION II

HARDWARE DESIGN

This section describes those design tasks that were either completed,

modified, or added during this reporting period. For review purposes, the

PATS hardware tasks were broken down into the following subparts:
e Image Enhancement
e [Edge Signal
e Bright Signal
e Interval Generation
e CPU1
® Memory 2 (intensity information)
e CPU2
e Symbol Generation
e Sync and Timing

In previous reports, the design tasks for image enhancement including DC

restore, edge signal, and CPUl were reported.

During this reporting period, the following has taken place:
1. A modification to the sync and timing section has been made.
2. A task for the interface between CPU1 and CPU2 has been added.

3. A task for building a writable control store in the Intel MDS

has been added.




This section includes a status table of the various hardware modules used
in PATS, a disucssion of the designs modified or added, and a discussion

of the results obtained on the edge checkout.
STATUS OF MODULES

Table 1 presents the status to date of the functional subassemblies defined

for PATS. The percentage completed is a rough estimate of where we are
with each task. One hundred percent means that the task is essenti:ﬂ.ly
complete but changes may be made during checkout. Included in the status
are preliminary schematics to be used for build and checkout. Some functioas

are broken down to reflect the actual number of boards used in the system.
SYSTEM SYNCHRONIZATION AND TIMING

Since the last reporting period, the system synchronization and timing unit
has been totally designed. There are two boards in the unit. The first
board provides sync separation and video switching. The second board

generates timing signals common to the other PATS system functions.

Sync Separation and Video Switching

The sync separation and video switching section is shown in a block diagram
in Figure 1. The 525~ or 875-line format input video goes into a composite
sync separator which generates a delayed composite sync signal (CSYNCD).
The CSYNCD signal goes into a sync signal generator producing a black
video clamp signal (BCLMP), a field indicator (FLDIN), horizontal sync
(HSYNCD) and vertical reset (VRST). Timing for these signals for even




TABLE 1. STATUS OF PATS HARDWARE (PERCENTAGE COMPLETED)

i st 3

Check- ‘
Subpart Boards Design Schematics | Build Out
Image Enhancement
Adaptive Contrast Enhancement 1 100 100 100 0
DC Restore 1 100 100 100 0
Edge 1 100 100 100 a0
Bright 1 100 100 100 50
Interval 1 65 0 0 0
CPU1 (Digital Processing Subsystem)
: Processor Inc Multiplier 1 100 80 0 0
i Microprogram Memory 1 100 80 0 0
{ FIFO/DMA I/F 1 80 0 0 0
4 Memory 1 2 95 50 0 0
CPU1/CPU2 I/F (inc in CPU2) 1 0 0 0 0
! Memory 2
{ A/D, Summation 1 100 100 100 0
! Memory Control and Refresh 1 100 100 100 0
i Memory 512 x 512 x 2 4 100 100 25 0
! CPU2
CPU with 16K Memory (KD 11-HC) 2 NA NA NA 90
? PROM Board (MRV11-A4A) 1 NA NA 0 0
: Serial Port (DLV11) inc Printer/
i Keyboard 1 NA NA NA 100
; Refresh/Bootstrap (REV11-C) 1 NA NA NA 100
‘ Floppy Controller (RXV11-BA) inc
Floppies 1 NA NA NA 100
Symbol Generator (included in
CPU2) 1 0 0 0 0
Sync and Timing
Sync Separator and Video Switchesl 100 100 100 15
Sync Generation 1 100 50 100 15
4 Writable Control Store 1 100 0 60 0
NA - Not applicable to PATS Design Tasks
5




wexdelq jyoo1g SuryolimS O9pIA pue uotjeaedsg oukg ° aangig

OMSW —

IMSd >

OMSd >—o

V7
—<{ WO¥d
03aIA

J89v1
— oL

03a1A

01534 20
< WoY4

030IA
01S3¥ Ja
> 0L

SLvd
0l Y—————
0301A
1VdAS >
NOWAS >
0L INOW Y3LIWIT
0l AV3d
0301A aNY
¥344ng 4300y
INAS
INT8)
OMSH
INASI M
OMSL

a
v
QWA 1 )
XOW
7g9%1 JAILDY
dW DY
W08 NOILVYINID Y01V d3S
WN9IS  fa—o]
UINASH
wTTT INAS QINASD INAS
215vg 31 1504w02
TS8R

030IA

—< NI

03Q1IA




and odd fields is shown in Figure 2. The black clamp signal (BCLMP) is
generated by the trailing edge of CSYNCD (tbc ~1 usec). The horizontal
sync pulse is generated from CSYNCD such that it matches CSYNCD outside
of the sync serrating and equalizing regions and has a fixed period of 1'“ (the
horizontal sync period). A vertical reset signal (VRST) is generated about
10 psec after the first serrating pulse in each field and lasts until the next
equalizing pulse. The field indicator FLDIN transition occurs at the low-

to-high transition of VRST.

The input video shown in Figure 1 is clamped by the BCLMP signal causing
the black level in the video to be at a zero level. The resulting video
(VIDBC) goes to the input of the synthetic DC restoration unit and to three
multiplexers: the LAGBC mux, the PATS mux and the MONITOR mux.

The mux selection inputs are set by switches designated as PSW{, PSW1,
MSW@®, MSW1 and TSW(@. The LAGBC mux directs VIDBC or the video
from DC restore to the LAGBC unit. The PATS mux sends VIDBC or video
from DC restore or video from LAGBC to the PATS processing units
(interval, A/D, and summation, etc. units). The MONITOR mux selects
the same three inputs as the PATS mux plus a digital (TDIG) or analog
(TANA) test signal from the PATS processing units. The values of the
switches and their effects on the mux units are summarized in Tables 2-4.

An "X'" in the table means the switch can be '"0" or "1",

The output of the PATS mux is buffered to the other FATS unit. The output
of the MONITOR mux goes to the SYMBOL mux. The output of the SY MBOL.
mux is either the MONITOR mux output or a symbol pattern (SYPAT). The
mux is controlled by the symbol-on code (SYMON). The signals SYPAT and
SYMON will come from the symbol generator unit in PATS. The output of




pajeaauan) sjeudlS oukg oisedq

*Z 2ang1g

(ggo)
NIOT4

(ago)
Ls¥A

(aco)
QINASH

(1314
600)
QINASI

(0go)
dn128

(N3A3)
NI1Q14

(N3A3)
1580

(N3A3)
QINASH
(1314

NIA3)
GINASD

(aao)
dn108




TABLE 2. PATS MUX OUTPUT SWITCH SELECTION
PSW1 PSWO PATS Mux Output
0 0 VIDBC '
0 1 Video from DC Restore
1 X Video from LAGBC
TABLE 3. MONITOR MUX OUTPUT SWITCH SELECTION
MSW1 MSWQ | MSW§ MONITOR Mux Output
0 0 0 VIDBC
0 1 0 Video from DC Restore
1 X 0 Video from LAGBC
0 0 1 TDIG
0 1 1 TANA
1 X 1 Not Connected
TABLE 4. LAGBC MUX OUTPUT SWITCH SELECTION
PSW1 PSW¢ MSW§ LAGBC Mux Output
0 X 0 VIDBC
0 X 1 Video from DC Restore
1 0 X VIDBC
1 1 X Video from DC Restore
9

-




T

the SY MBOL mux goes into the sync adder and peak limiter where
blanking (CBLNK) and composite sync (CSYNC) are added to give a standard
1 V peak-to-peak composite video signal. The video is then buffered

to drive a standard video monitor.

System Timing Generator

The system timing generator produces sync signals and clocks that are
synchronized to the incoming video sync pulses and are used by the other PATS
units. A block diagram is shown in Figure 3. Two clocks are generated by
phase-lock multiplying the horizontal sync signal HSYNCD from the sync
separator and video switching unit. The clocks produced are 50 percent duty
cycle. The 512-clock has 512 clock pulses per active video in the horizontal

scan line and the 455-clock has 455 pulses per total horizontal scan line. The

512-clock is used in digital sampling functions and the 455-clock is used for
the analog CCD devices. The phase-lock multiplying loop for the 455-clock
uses HSYNCD and the clock frequency divided by 455 as its inputs. The PLL
functions shown in Figure 3 are a digital phase comparator and a low-pass
filter. Two VCOs are used in the loop to increase the frequency range to
allow both 525 and 875 line operation, The VCO is selected by LRATE in the
455 mux (LRATE = 0 for 525 and LRATE = 1 for 875). The mux output is
divided by two to obtain the 455-clock with a 50 percent duty cycle.

The 512-clock phase=~lock multiplying loop is identical to that of the 455-
clock except that its clock-dividing section is more complex. The 512-clock
drives the horizontal timing generator. The HSYNC output of the generator
is the phase detector input for the loop. The horizontal and vertical timing

generators with the vertical reset circuitry and combining logic make up 2a

10




A

SYNC GENERATOR :

VCLK Tk ,
VERTICAL il
VCI FAR >
VERTI CAL i VSH
i RESET RESET WIND =
"““’: CIROIRY £ ™1 cenennonn Rl
} ] e " o i
| VSHq_, —VSERR ™| TR
' ——»1 Logic [FUWH—
I |
I
| |
; LRATE 9 — :
! =) = :
i - SERR i
. L ] — [
' HSWy.2 HORIZONTAL  |HEQU ;
: 3 HSYNC |
1 TIMING BLNK !
b oo — - = HWIND . .
;| GENERATOR Fcﬁzﬂ :
—
: HSHL —>
512 i DRY >
MuX et B P —
512 Vo
DIGITAL HIGH
CLOCK g JCLKS12 [ I
VCo PLL
LOW FUNCTIONS o
LRATE
455
i P veo PLL
HIGH | FUNCTIONS
CLOCK -
otz
Vo
LOW
LRATE
— 455

Figure 3. System Timing Generator Block Diagram

11




o A ——

N —— e

sync generator similar to available integrated circuit 525/625 line systems.

However, since PATS requires an 875-line format and no 875-line integrated
circuit sync generators were available, a general purpose sync generator

was designed.

A typical sequence of timing waveforms generated by the horizontal timing
generator is shown in Figure 4. All of the signals have a period of TH or

2 STH. where t  is the horizontal period. The signals are derived from

the 512-clock ;:ld their durations are integral numbers of periods of this
clock. The basic horizontal sync signals are horizontal drive (HDRYV),
blanking (HBLNK), and sync (HSYNC), as well as those used during vertical
sync serration (HSERR) and equalization (HEQU) intervals. Additional
signals used by other sections of PATS are two sample-and-hold signals
(HSH1 and HSH2), a clear pulse (HCLEAR), a window region (HWIND), and
a clock pulse to the vertical timing generator (VCLK). The HWIND signal

is used to mask out video which is used for viewing purposes but not for

target areas such as temperature reference bars or black regions.

The structure for generating the horizontal sync signals is shown in Figure
5. This horizontal timing generator is a programmable waveform generator
capable of generating 16 separate, independent, and periodic waveform
packets. A 512 x 24 PROM is used to store a count value, a signal select
code, and a reset or jump bit. The 10-bit count value (QO-Q) is the number
of 512-clock pulses that the select code bits stay fixed. Each select code
bit represents one of the horizontal sync signals (HSERR, HSH1, etc.);
there can be up to 13 signals (Q10-22)' The reset or jump bit (Q23) when

set causes the waveform sequence to be repeated. A summary of the bits

and meanings is shown in Table 5. The nine-bit address for the PROM




SwWJI0jaABM\ SuTWL], [8jUOZIIOH [edldL], °*p 2andrg

ATIA

\ aNIMH

dv3TIH
.

¢ HSH

THSH
/ _Ij INASH
// /'* \ INTEH

DIIIW'I A4QH

NO3H
dd3SH

>l

B
BN

13




o

[TPrROM !
512 x 24l
LRATE > A Q . 13
8 10-22 %
HSW > 10
0- A Ae; Qo B
ol f0-a %23
x° ADOR
LD
Q 5 ||0u
0-84 Dy, -2
f——
LK
rg— 010 LD bat—
SATA
CNTR
00_9 <—
DIO ——’ uln
CK j—
HSERR ~ ——————
HEQU -
HSYNC = T——
HB LNK CK j——
HWIND <L| DATA
HOLER LATCH
BN g ——— 00_12‘
HSH2 4__]—_—
HDRV <
VCLK |
N/C {‘—__

Figure 5.

Horizontal Timing Generator

14

N

512-CLOCK

oo




TABLE 5. HORIZONTAL PROM BIT FORMAT

Prom Bit(s)

Definition

HEQU
HDRV
HBLNK
HSYNC
HSH1
HSH2
HCLEAR
HWIND
HCLK
Not Used
Not Used
Not Used

10-Bit Counter Value
(Negative 2's Complement of Actual Count Value Minus One)

HSERR ("1" enables signal)

JUMP (if "0")

15




is generated by a five-bit address counter (A0_4), the LRATE signal (A8).
and a three-bit switch HSW (A

0-2 5‘_7). The most significant address bits

(A5__8) are fixed in normal operation. The address counter is clocked and

reset by the jump bit Q23 and by Q10 of the 11-bit data counter. When Qlo |
of the data counter goes from 0 to 1, the data counter is loaded with the

count value (Qo_g) from the PROM; the data latch is loaded with the signal

select codes Q10_22 and the address counter is incremented if Q23 is 1 or

loaded with zeros if Q23 is 0. Because of the count technique, the count

value loaded into the PROM must be the negative 2's complement of the

decremented count value. This means that the minimum count value is

two.

The VCLK output generated by the horizontal timing generator serves as

the clock to the vertical timing generator. This timing generator is identical
in structure to that in Figure 5 except that an external reset control is
available to allow external synchronization, Typical timing waveforms for
the serration, equalization, blanking, and drive are shown as VSERR, VEQU,
VBLNK, and VDRV, Three additional signals are added for other PATS
functions, these being a clear (VCLEAR), a sample-and-hold (VSH), and a
window (VWIND) signal for masking out lines at the top and bottom of the
video field. The vertical PROM format for generating these signals is

shown in Table 6.

The vertical timing generator must be locked to the video by a reset signal
from the sync separator and video switching section; the horizontal timing

generator is phase-locked and needs no reset signal. The vertical reset

circuitry synchronizes VRST to VCLK and then presets the address counter
in the timing generator so that the vertical timing starts with the second

serrating pulse in the serration field.

16




[
| ! !
|

VSERR =

VEQU : ; 1

VBLNK —

VWINDOW |
|
VCLEAR '—7L'\
! \

VDRV _F E

VSH = :

Figure 6. Typical Vertical Timing Waveforms

17




\ ’

TABLE 6. VERTICAL PROM BIT FORMAT

Prom Bit(s) Definition
Qo-n 10-Bit Count Value |
‘ (Negative 2's Complement of Actual Count Value Minus One)

Qo VSERR ("1" enables signal)
Qll VEQU
Q. VDRV
(213 VBLNK
Ql4 VSH1
()15 VCLEAR
('216 VWIND

()17_22 Not used
Qyq Jump (if ""0")

The outputs of the two timing generators go to the combining logic to
generate composite sync (CSYNC), blanking (CBLNK), and window (CWIND).

The logic equations for these are shown below:

CSYNC = VDRV + (VEQU - HEQU + VSERR + HSERR + (VDRV - HYSNC)
CBLNK = VBLNK + HBLNK
CWIND = VWIND . HWIND

The outputs on the system timing generator are all buffered to drive 20
TTL-S loads.

CPU1/CPU2 INTERFACE

Initially, this function was to be primarily a one-way communication from

CPU1 to CPU2. The only data to be transferred were target position and

18




classification data. However, during initial checkout we require known data
to be stored in all the memories. Because of this a high speed data transfer

is necessary in both directions.

A first definition of this interface is shown in Figure 7. CPU1l and CPU2
communicate via DMA transfers between Memory 1 and Memory 2 in

CPU1 and the CPU2 (LSI 11/2) memory. Two separate DMA controllers
are used, controlled by a handshake. Each controller has registers

which store the address of the first word to be transferred and the transfer

length.

In order for CPU1 to talk to CPU2, the following must occur:

1. CPUI1 loads its DMA registers and interrupts CPU2 to request
DMA.

2. CPU2 services the CPUl interrupt by loading its DMA register

and then sending a go-ahead signal to both DMA controllers.

3. The DMA executes and is terminated by the CPU1 DMA
controller, sending a signal to the CPU2 DMA which in turn
interrupts CPU2.

In order for CPU2 to talk to CPU1, the following must occur:

1. CPU2 loads the register in the CPUl1 DMA controller either
via single cycle DMA or a parallel I/O mode.

2. CPU2 loads the register in its own DMA controller and then
issues the go-ahead to both DMAs.

3. The DMA will terminate automatically.

19




9dejIdul ZNdD/INdD "L @andtg

Z# AYOW3W T# AJOW3W
1dNYY3INT AY3IHY 09
VWA 1YY1S
YWa d01S ﬁ
Y 1
Yid YIa
Z2Ndd ndd
3
A
)
2NdD Y1YQ H19N3T H H19N3T
SS3yaay a Ss3yaay
LYvYLS N IR LA RS ndd
Y
H
AJOW N

LdNYY3INT 1SINDF] VWA

1dNYY3ILNT Q3av01T Yivd LS3L

20

;




Note that while a DMA is in progress, both CPUs are prevented from
accessing memory. CPU1 can continue to run as long as it doesn't

access memory.
This is the preliminary definition of what must happen in order to have
data transfer occur in both directions. A more complete definition will

be included in the next report.

WRITABLE CONTROL STORE

In order to check out the microprogram coding, three options are available.

The options are:
e EPROM
=] PROM
e Writable Control Store (RAM)

The EPROM option would require an additional design since therec are
few EPROM/PROMS that are directly compatible. Also, the EPROM

option only allows non-real time operation of CPUI.

The PROM option will be included in the final operation configuration.
However, during initial checkout, several microprogram coding changes
can be expected. This could become expensive if a new PROMS were

programmed for each change.
The third option gives us real time checkout as well as the capability to

dump the microprogram from floppy disk directly onto the RAM in the

writable control store.

21

]

NBF V5 VNSRS




lines as shown in Figure 8.

1
E |
. I
1 : BUS
i £ INTERFACE
q L
M
| D
z S

22

K x 72
MEMORY

e

The requirement for this option is basically an interface between the Intel

MDS bus and the memory. The interface to the microprogram memory is

a cable which connects into the microprogram memory data and address

ADDRESS BITS

DATA BITS

Figure 8. MDS Writable Control Store

>




—

i g

e ot et —————

SECTION III

EDGE CIRCUIT CHECKOUT

The edge circuit board has been built, wired, and functionally checked.
Two potential problems necessitating minor hardware redesign have been
noticed. The first is that an edge signal occurs at the beginning of each
scan, due to blanking/grey level transition; this must be gated out. The
second problem is that the video input to the edge circuitry must stay

within prescribed voltage limits or the CCDs will saturate.

Figures 9 through 16 are video pictures taken at various points in the
circuit, Figure 9 is the video input from a camera. Figure 10 is the
difference signal or the input to the absolute value circuit. White indicates
a high rising edge while black indicates a following edge. Figure 11 is

the absolute value output.

Figure 12 is the output of the integrator on a line-by-line basis. The data
is negative and hence will grow darker as one goes from left to right on

the image. Figure 13 is the output of the sample/hold. This remains
coastant across a scan line. Figure 14 is the logical edge output with

high multiplier value for KET Figure 15 has a lower multiplier value.
Figure 16 shows the edge superimposed upon the video. Note the horizontal

delay which will be compensated for in the interval circuit.

23

A R A i



Figure 10.

Figure 9. Video Input

High Pass Filtered Video (Edge)

it i et S i

PN, T e——




Figure 11. Absolute Value of High Pass Filtered Video

Figure 12, Video of Figure 11 Integrated Across Each Line




Figure 13. Video of Figure 11 Integrated, Sampled
at End of L.ine, and Held

Figure 14. Edge Board Output (High Threshold Settings)




Figure 15. Edge Output (Lowered Threshold Settings)

Figure 16. Edge Output Superimposed on Input




SECTION IV

SOFTWARE

In this section, the status of various software functions is discussed.

Several diagnostic modules have been added. These are primarily

related to the use of CPU2 in checkout of the hardware. A discussion of

the algorithm used for bin matching is also included.

CPUl FIRMWARE

This section will describe the bin matching implementation software,
discuss changes made in the CPUl microinstruction format since the
last report, and give worst case performance estimation for the CPU1

modules coded thus far.

The algorithm being used to implement the bin matching function was
briefly sketched in a previous quarterly reportl. The algorithm utilizes
all the bin matching criteria embodied in the PATS software simulation, 14

but does so more efficiently.

1D. E. Soland, et.al., "PATS Quarterly Progress Report, ' Coatract
Number DAAK70-72-C-0248, Honeywell Systems and Research Center,
Minneapolis, Minnesota, June 15, 1978, pp. 81-87.

. E. Soland, et.al., "PATS Quarterly Progress Report, " Contract
Nunber DAAK70-72-C-0248, Honeywell Systems and Research Ceater,

Minneapolis, Minnesota, January 15, 1978, pp. 78-82.

28




Bin Matching

Algorithm Description--The purpose of the bin matching algorithm is to

match or combine intervals from successive scan lines into two dimensional
objects. These objects or 'bins' are then passed to feature computation

firmware and ultimately classified as either target or clutter.

Intervals are placed into Memory 1 in a packed format by the interval
generation and direct memory access hardware. The interval data 1s
dumped at the end of each line in the format shown in Figure 17. Data
for a given line is terminated with a zero word, which is overwritten
when data is generated for a subsequent line (the significance of this zero
word will be discussed below). Data is only dumped to memory for lines
which contain intervals. The PATS front end also generates end of line
and end of frame interrupts to CPUl. The service routine for the end

of line interrupt increments a counter, and the routine for the end of

frame interrupt sets a flag indicating that end of frame has occurred.

The bin matching firmware uses a routine called INTERVAL which fetches
and unpacks interval data from memory and passeé it back to the main
body of the algorithm. Whenever INTERVAL encounters a zero word
where the next line of data should be starting, it knows that, at least
temporarily, it has reached the end of the data in Memory 1. This
indication, together with the state of the end of line counter and end of
frame flag, allows the routine to set three status flags: EOD (end of data)
is set true when INTERVAL has run out of data in Memory 1 and the end
of frame flag has been set; DATA is set true whenever INTERVAL
successfully finds interval data in Memory 1; and NEWLINE is set true

29

il




FIRST
INTERVAL

LAST
INTERVAL

A o

.

10 BITS —¥

NUMBER OF
INTERVALS LINE NUMBER
H/C STARTING X WIDTH
/i
RIGHT BRIGHT COUNT
EDGE
B 31
L~
N T\
H/C STARTING X WIDTH
TEFT/
RIGHT BRIGHT COUNT
EDGE
B vl

Figure 17. Interval Data Format

30

Py




whenever INTERVAL encounters the start of a new line, whether or not
it has data. The main body of the bin matching algorithm exsmines these

flags prior to processing any of the interval data returned by INTERVAL,

Intervals are either hot or cold and, similarly, each bin produced by bin
matching is either hot or cold; i.e., we do not mix intervals of different
"colors'" in the same bin. The bin matching algorithm is designed to
process hot and cold bins and intervals independently of one another. That
is, the algorithm produces in one pass through the interval data the same
results it would produce in two separate passes, where each pass was

only processing intervals of one color and ignoring those of the other.
Re-entrant coding of the bin matching algorithm makes this possible. In
essence, the algorithm possesses two sets of state variables, one for hot
interval processing and the other for cold interval processing. The
algorithm accepts interval data from INTERVAL for one interval at a time.
When the algorithm encounters an interval opposite in color to the interval
previously processed, it saves the algorithm state just prior to the
acquisition of the new interval and restores the state corresponding to

the color of the new interval. This context switch essentially involves
swapping address pointers. The data dependent on each interval color

is organized into a contiguous block of storage in Memory 1. There is

one block for hots and one for colds and a pointer to each. A context
switch is carried out by substituting the working pointer of the algorithm

with the pointer to the block for the appropriate color.
Once an interval has been acquired and the appropriate context set, the

algorithm attempts to match the interval to a bin. A workspace of

approximately 7K words in Memory 1 is divided into continguous blocks of

31




168 words each, Each bin or object is developed in one of these blocks.
Table 7 describes the data block format. A bin's data block is updated
each time a new interval is matched to that bin. Each block can accomodate
data for up to 32 intervals. These data blocks are stored by bin color
(i.e., hot or cold), and active bins of the same color are ordered in
increasing value according to the midpoint of the last interval assigned to
each bin. This order relation is indicated by linking the bins together
into two singly linked lists. There are two list headnodes (one for hots
and one for colds) and, as Figure 17 shows, each bin data block has a
word for linking it to another bin. Keeping bins of the same color ordered
by midpoint systematizes the bin matching process. When matching

an interval against all bins of the same color currently in existence,
certain bins may be immediately ruled out. For example, if, in going
through a bin list, one bin is found to be horizontally to the right of the
interval, it is then known that all bins following this bin in the list are
also to the right of the interval and cannot match it. Another fact used

to make the bin matching process more efficient is that intervals from a
given line occur in increasing order according to the interval midpoints.
In this way, for example, if an interval is encountered which is to the
right of all the bins currently in existence, it is then known that all other
intervals from the same line as the latter interval will also not match

any of the bins,

Bin matching proceeds in the following manner. An incoming interval of
a given color is matched against elements of the bin list corresponding

to that same color by starting at some bin and working towards the end of
the list by following address links. When data from a new line is

encountered, this starting point is initialized with the current headnode




TABLE 7. FORMAT OF BIN DATA BLOCK

Word

(S A V=

© o =9 o

10

12
13
14
15
16
17

164
165
166
167
168

Address link to next bin

Midpoint of last interval in bin
Starting address of last interval in bin
Starting line number

Total interval count

Active interval count

H/C (= 0: hot; <0: coly)

Intensity sum

X

X + width - 1

Width Interval 1
Feature word 2

Feature word 3

X

X + width - 1

Width Interval 2
Feature word 2

Feature word 3

X

X + width = 1

Width Interval 32
Feature word 2

Feature word 3




on the list. To start off, the algorithm checks if the bin list being
examined is empty or if the end of the list has been encountered (these
conditions are equivalent since both involve accessing zero or null pointers).
If either of these conditions is true, a new bin can be started. Otherwise,
the interval is compared with the bin at the current starting point. If the
left endpoint of the interval is greater than the right endpoint of the last
interval currently in the bin, then it is known that the interval cannot
match this bin but it might match one farther down the list. In this case,
the algorithm links to the next bin in the list and repeats the whole

process, starting with the check for end of list. If the left endpoint of the
interval is less than or equal to the right endpoint of the bin, then we have
a case of possible overlap and another comparison is made. This time,

if the right endpoint of the interval is less than the left endpoint of the bin,
it is then known that the interval lies entirely to the left of the bin currently
being examined; since the interval also did not match the bin just prior to
the current one, the interval must be between the two bins, so a new bin
may be started. If, however, the right interval endpoint is greater than

or equal to the left bin endpoint, then interval and bin overlap and bin
matching criteria can be checked. The first criterion is midpoint corre-
spondence. If the midpoint of the interval falls within the bin or the mid-
point of the bin falls within the interval, a match is achieved. If the first
criterion is not satisfied, then the second criterion, intensity correspondence,

is checked. If:

s . =
L, 10 ﬁb IiI
where I—b = average intensity of last interval in bin

Ti = average intensity of interval,

34




then a match is achieved. If this criterion is not satisfied, then the
algorithm links to the next bin and restarts the whole process with the

end of list check.

If a bin match is achieved, then the algorithm applies the same bin matching
process to subsequent intervals, trying to match them to the same bin at
which the first bin match occurred. As long as intervals match this bin,
they are concatenated together to form a single larger interval. When an
interval is finally encountered which does not match this bin, then the
(possibly compound) interval which did match it is used to update the bin.
The algorithm then links to the next bin in the list and restarts the bin

matching process with the new interval.

When a bin is completed (i.e., the missed scans criterion has been
satisfied), the origin of the bin is passed to the clutter classifier. If the
bin is classified as clutter, it is removed from the list of active bins it
was a part of and is instead linked into a list of bins which can be reused.
The bin is processed no further. If the bin is classified as target, it is
also removed from its active bin list and is linked into the list of bins
which will be passed to the recognition classifier. In this way, all bins
in a frame are classified as clutter or target before any are recognized
as being a particular type of target. Doing classification of bins in
parallel with bin matching relieves the bin memory requirements since
some bin3s are being thrown away at the same time others are being
started. Only partial classification of bins is carried out at this time
since the recognition classifier requires access to Memory 2. Memory
2 is totally unavailable to CPU1l while the frame is being digitized. So,

to make maximum use of the processing time available to CPU1 during

35

U,
BT Icr -V CpRp—

2 O DN i




this digitization period, it is best to use CPU1 to do things which do not

involve accesses to Memory 2, i.e., nonrecognition functions.

When the algorithm determines that a new bin must be started, it first

checks the list of reusable bins mentioned in the previous paragraph. This
list is, of course, initially empty. If this list is empty, the algorithm then
references a pointer to the first location in memory which has not yet been

used for bin storage.

Flow Cha_r_t

Figure 18 is a flow chart of the various operations discussed above. The
diagram is not extremely detailed but suffices to indicate the flow of control
between the major operations. A few words about the notation are in order.
INTVL, IV, and IVNXT are all vectors of interval features. INTVL is
fetched by the routine INTERVAL which was described previously. I1 and
12 are, respectively, left and right endpoints of the interval currently
being examined; J1 and J2 are, respectively, left and right endpoints of

the current bin. The logical flags EOD, NEWLINE, and DATA are all set
by the routine INTERVAL,

Bin Matching Summary

In short, the bin matching implementation attempts to .maximize efficiency
by minimizing the expected number of comparisons which must be made
against a given interval, Bins are organized into two separate lists, and
an interval is never compared against the elements of more than one list.

In addition, within each list bins are ordered according to the way they

36

|



START

TNITTALTZE -
£ <. F.
NEWLINE < .T.
DONE - .F.
NL + LF.
SHiTCH
T TNTVL CONTEXT
Y ToNE? T Eo?
‘ T
REWLIR CLOSE BINS T
DONE « .T. - o
REQUIRED
YOIV
SWITCH Y POINTERS TO | T F
CONTEXT | R CHANGE ? | HEADNODES @
INTVL - IV -
N
g TNTTTALTZE
’ BIN

LINK TO
@-—-’ NEXT BIN

Figure 18. Flow Chart of Bin Matching Algorithm

37




GET INTVL 4

P |

l INTVL - IVNXT —l

SWITCH
CONTEXT

MIDPOINT CONCATENATE
CORRESPONDENCE? TVNXT ONTO
'S

INTENSTTY
CORRESPONDENCE?

MIN  WIDTH - MAX?

UPDATE
BIN

£E0D? TVNXT - 1V

CLOSE ALL T
BINS OF
! E[THER COLOR ’

DONE T

SWITCH
CONTEXT

Figure 18. Flow Chart of Bin Matching Algorithm (concluded)




line up horizontally across the frame. The algorithm makes use of this by

establishing a simpler necessary condition, namely bin/interval overlap,
prior to doing a full-blown test of the bin matching criteria. This results
in the latter, rather expensive test being done only when necessary, instead

of on every bin.

MICROINSTRUCTION FORMAT

Since the last quarterly report, the CPUl microinstruction has grown to 69
bits. The format of the revised microinstruction is shown in Figure 19,
Changes to the format published in the previous quarterly report are

described below.

A bit was added to control a two-to-one 16-bit multiplexer whose oatput

is connected to the DA input on the Am2903 array. This bit selects either
the literal field from the microinstruction or the Y output from the Am2901
array as the DA input. This change allows data transfer from the 2901s to
the 2903s; previously, we could only transfer data from the 2903s to the
2901s. This bit occupies bit 61 in the new format, and its default value is

0 (i.e., select literals field).

Another bit was added to control status register swapping. An additional
status register was added to the 2903s for the purpose of saving the contents
of the primary status register when, for example, an interrupt is being
serviced and one wants to preserve the status in the main routine. This

bit occupies bit 57 and its default value is 0 (i.e., no swap).

39




(Iscolx mEEEm.Hmo&nC JBULIO UOTIONJIISUTOIDTIN INdD P3YIFOIN °gT 2andrg
30130 | 1dn¥¥3INI] 393174
/RSOW3N] - 110w
NOILONNA f . f4LSNT ["iN0D)
== | WK | ¥
118 89 f/9 99 miwm_
43114 ;
- 1170W (€062) 9INISS3IIOHA v1vQ ("INOD) TO®R
d (NOILINNS T T 1)
YL has o/o 1037135 ¥ ys | 3m W1934S) NO 1LONNS 3%4N0S $S3¥aay SS3uaay 3 s In
¥a]iysf asewol B 01 NOILWN 11530 - ¥ s{u |3 [n
glojg |y
E 29{ 19] 0965 8s| S 95| ss] vs 15 ] 0s Ly |9 vy | €v ov |ee 9 [se |ve [ec Nw_
(T062) NOILYY¥3IN39 SS3I40GY AYOWIW (0162) 104107 §3ONINDISORT I
-
%[ 308n0s|  ss3aay $S34aQy S (€062 PU® T062 HLIM Q3SN) ¥4I 17 NOILOMYLSN]
n 8 v 3
] d SSIWAQY dWnp 133135 aNOd 0162
1€ foe 62 |82 52 | v2 12| 2| et e [¢ v [€ o

40




A third bit (bit 69) was added to control interrupt enabling/disabling. The

default for this bit is 0 (i. e., enable all interrupts). CPU1 will accept
eight discrete interrupts, each having a different priority. There is no

interrupt mask (i. e., no selective interrupt disabling).

Other bits in the microinstruction word were rearranged to mak< room for
these additional bits, as is shown in Figure 19. An additional change was
made to the memory control bits. These two bYits (bits 66 and 67 in the
new format) were encoded to provide an additional mode of coatrol when

reading Memory 1.
EXECUTION TIME ESTIMATES

Execution time estimates for the various CPU1 firmware modules appeared
in a previous report. . These estimates were made prior to the generation
of any detailed microcode. Revised worst case estimates have now becn
made for the clutter classifier, median filter, and moment feature computa-
tions based on generated microcode. The estimates assume a total of

fifty 32 x 32 objects passed to the clutter classifier, 10 of which are
ultimately passed to the median filter and moment feature computations.

The execution times are as follows:

3D. E. Soland, et.al., "PATS Quarterly Progress Revort, ' Coatract

Number DAAK70-72-C0248, Honeywell Systems and Research Center,
Minneapolis, Minnesota, June 15, 1978, p. 91.

41




i

it

Clutter Classifier - 25, TKul x 0,2us/pl = 5.14 ms
Median Filter - 36.5Kul x 0.2us/ul = 7.30 ms
Moment Features - 61,4Ku] x 0, 2us/pl = 12,28 ms
24,72 ms ?

These new estimates compare favorably with the old ones. New estimates
have not yet been made for bin matching and the K -nearest neightbor
recognition classifier but we believe the final estimates will be favorable,
since the firmware currently generated only uses roughly 25 percent of

the 100 ms available per processed frame.

CPU2 SOFTWARE

The initial design is complete for CPU2 software. A convenient way to
divide the software for discussion purposes is to split it into two categories:
diagnostics and non-diagnostics. The diagnostic software includes facilities
for memory tests, for CPU interface tests, for display tests, and for
exercising the system with test data, Non-diagnostic software includes
interframe analysis, cueing, a supervisor that controls processing, a
routine that controls the system during training, and assorted support
subroutines. Some routines are used by both diagnostic and non-diagnostic

procedures.

Table 8 lists the routines used primarily in diagnostics. Table 9 lists the

other routines. Figure 20 shows how they all relate to one another.

Appendix A describes the function of each routine.

No‘ice there are two memory tests, two routines for testing memory. .

MEMTEST is a far more elaborate test than CHEKMEM, MEMTEST will

42




it Sk

i

TABLE 8.

CPU2 SOFTWARE USED PRIMARILY FOR DIAGNOSTICS

1

CHEKMEM
DISPTST
MEMTEST
PROTOCL
SIMULAT

TABLE 9. OTHER CPU2 SOFTWARE

General Interframe analysis Cueing
CPUILINPUT COSTIT APC
DMA CODE ELECT CUEIT
DMAINVL GETUM ERASE
DMARES1 HUH NONTARG
DMARES2 INTER NOTHING
DMAVEC1 PAIRUM ' TANK
DAMVEC2 PICK TRUCK
INITIAL JIT
ISR1
ISR2
OPINPUT
SUPER
TRAIN

43

oo




SOIMPOIA d1BMJOS JO AYoaeaatH gNdDd °0g dIndig

253Vl —
233AVW0 —
ISIYWE —— WIIIH —
123AVW —
30403vwa , 10201044
WN139 ==
INANITNGD ——
K 111502
YIHONMV WY _ IANIVWG — LYINWIS ——
NONNYD WY | W1d WY IV i—
RIYINON __| N_EEL
1IN — 12313 —
——— 11302
Jdv U 1514510
¥NyL aan
INYL —
Isvd3 U
9N IHLON NIVYL
1NdNId0
WILINT |
1viSdwd |
1S31W3N

YS]  -— .
n

44




be used to help find problems while Memories 1 and 2 are being built

and debugged. After the memories seem error free and are being used
frequently MEMTEST will not be used very often. CHEKMEM is intended
for use as a quick check during the software system build. If the software
suddenly produces strange results the programmer will be able to use
CHEKMEM as a debugging tool to assure himself there are no gross memory

problems.

The simulation of real time execution using SIMULAT will allow us to read
frames of imagery and interval data from floppy disk. These data will be
written in Memories 1 and 2 for processing by CPUl. When the object
features are passed to CPU2 the objects can be processed through inter-
frame analysis and cued. Intermediate results will be read from floppy
disk and compared with those passed to CPU2. Differences will then cause

error reports to aid in debugging.

The interframe analysis routines increase the reliability of object classifi-
cation across several frames. Currently the number of frames used for
decision making is one frame while in the training mode. The software will
be coded so the number of frames can be set as a parameter. The default
will be three. When the number of frames is one, interframe analysis is

effectively turned off.

The basic operation in CPU2 is one of waiting for something to happen.

In non-real time mode the supervisory routine SUPER asks the operator
what he wants to do. Given an input SUPER begins the processing as
requested. In training, simulation, or real time mode SUPER is in a loop
checking flags. The flags are set by the interrupt service routines ISR1

45




and ISR2 when CPU1 sends data to CPU2. The flags set depend upon the

kind of data passed. Error messages are typed out immediately. Inter-
mediate results are typed and/or compared with expected values by SIMULAT,
Object features are passed to INTER for interframe analysis. Then objects
to be cued are used by CUEIT. In training mode TRAIN interacts with the
operator to classify an object. Then the object features and classification

are stored on floppy disk.

46




SECTION V

PL.ANS FOR THE NEXT REPORTING PERIOD

During the current reporting period, we planned to complete the fabrication
of all circuit boards and begin checkout at the board level. However, because
of some design problems with CPU1 and delays in part deliveries, the

circuit fabrication task will extend through the { rst half of the next reporting
period. Checkout of the boards completed to date has begun and will continue
through the next reporting period. Also, software coding and checkout

for both CPU1 and CPU2 will continue through the quarter.

47




APPENDIX A

CPU2 SOFTWARE MODULE DESCRIPTIONS




APPENDIX A |

CPU2 SOFTWARE MODULE DESCRIPTIONS

APC: cues armored personnel carriers by superimposing the

letter A over the object. The size of the letter is propor-

tional to the size of the object.

| CHEKMEM: performs a simple test of Memories 1 and 2. The test
uses CPU2 to write the address of each word in the word,
then reads and verifies the value. Then CPU1 is instructed

1 to read the words and verify the values. Finally CPU1l

5 writes zeroes to all words and CPU2 reads and verifies

them. So each CPU writes and reads what the other one

18 has written.

| COSTIT: used in interframe analysis, computes the cost of claiming

i that an object in frame N is the same as an object in frame

| N-1. The costs are computed for all possible pairings of
objects in the two frames. The cost is the sum of the
absolute differences of the object features. So the most

similar objects have the lowest cost.

CPUIINPUT: decides what kind of data has been passed to CPU2 from
CPU1 and then decides what to do with the data. The
first word passed to CPU2 contains a code for the kind of
data sent: 0 = object features, 1 = debugging information
like intermediate results, 2 = an error code. Error codes '

cause an error message to be printed immediately.

50




CUEIT:

DISPTST:

DMACODE:

DMAINVL:

DMARES1:

Intermediate results are printed and/or compared with
expected values for validity. Object features are kept

for use by interframe analysis.

controls the writing and erasing of symbols in the graphics
memory. It does not do the writing; it merely sets up the

arguments and calls the proper symbol generation routine.

performs a test of the graphics system. All vertical and
horizontal lines are displayed one at a time for the operator
to verify. Then all symbols geaeration subroutines are

used to produce their symbols for verification.

passes a control word to CPU1 from CPU2. The control
word tells CPU1 what procedure is to be followed. The
word to be sent is passed in to DMACODE. Then DMACODE
concerns itself with all the interface protocol needed to

send the message and verify that it has been received.

sends interval data to Memory 1 during simulation with
test data. The interval data are read from floppy disk
by SIMULAT and passed to DMAINVL. This routine then
concentrates on the interface protocol necessary to send

the data to Memory 1 and verify that it has been received.

used during testing of Memory 1, reads Memory 1 beginning
at a specified location and stores the values in vector
RESULTS for verification later. DMARES1 concentrates on

interface protocol needed to read the data from Memory 1.

51




TR

DMARES2:

DMAVEC1:

DMAVEC2:

DMPSTAT:

ELECT:

ERASE:

the same as DMARESI1 except that Memory 2 is the memory

tested. v

used during testing of Memory 1, writes a vector of data
from CPU2's memory into Memory 1 via the DMA inter-
face. The routine receives the data from the calling routine
so DMAVECI1 concentrates on passing the data by following
the interface protocol and verifying that the transfer has

occurred,

same as DMAVECI1 except that Memory 2 is the memory

under test,

used at the end of a training session, statistics collected
for all objects detected in all frames during a training
session are saved in arrays. At the end of the training
session the statistics can be printed by entering execution

code 6 when the system asks for a code.

used in interframe analysis to decide what classification
should be assigned to an object, calls the cueing routine

to cue the object. ELECT counts the frames in which the
object occurs and the classification assigned to the object
in each frame, The classification assigned is the one which

occurs most often in the frames queried.

used in the cueing procedure to find cued targets whose
cues can be erased. The lifetime of a cue is defined in
terms of the number of frames which will be displayed
while the cue is retained. When the number of frames

exceeds the defined lifetime ERASE removes the cue. ¥




GETUM:

HUH:

INITIAL:
INTER:

ISR1:

ISR2:

MEMTEST:

used in interframe analysis, reads the object features
passed to CPU2 from CPUl. The features were stored in
a temporary buffer when CPU1 interrupted CPU2. GETUM
copies the features to a permanent buffer for evaluation by

interframe analysis.

used in interframe analysis routines to compute frame
identifiers for use as subscripts in other subroutines.
The identifiers are computed relative to the current

frame identifier,
assigns initial values to variables and vectors.
controls interframe analysis.

the interrupt service routine entered when the interrupt

means a DMA has been completed.

the interrupt service routine entered when CPU1 wants to

transfei' data to CPU2.

tests Memories 1 and 2 using a moving inversions test.

This procedure inverts the data of each address sequentially,
creating an access time by the jump from one address to
another which contains different information. Read/write/
read operations are performed with both forward and

backward address sequences.

“The procedure has been reported by J. Henk De Jonge and Andre' J.
Smulders in ""Moving Inversions Test Pattern is Thorough, Yet Speedy, "
Computer Design, Vol. 15, No. 5, May 1976, pp. 169-173.

53




NONTARG:

‘ NOTHING:

OPINPUT:

PAIRUM:

PICK:

used in the training mode. An object detected by CPU1 is
initially displayed and cued with the letter U meaning
unidentified target. After the operator decides what the
object is and puts in the class code the object is cued with
the appropriate symbol. If the operator decides that the
object is not a target, subroutine NONTARG is called to
cue the object with the letter O. The operator then knows

the proper class code has been assigned to the object.

used by the graphics system to draw a big letter X across
the whole screen when, in the training mode, CPU1 has
found no targets. The operator then knows processing

on that frame is complete and no targets have been found.

used by the supervisory routine to interact with the )
operator. Queries or directives are printed and input is
accepted by OPINPUT. The input is verified as at least
being valid, if not correct, before the input is passed to

other routines for use.

used in the interframe analysis procedure. Subroutine
PICK links objects in frame N with objects in frame N-1.
If there are objects in frame N which cannot be matched
with objects in frame N-1, subroutine PAIRUM tries to
match those objects with unmatched ones in frame N-2. So

PAIRUM links objects in frame N with objects in frame N-2,

used in interframe analysis to decide which objects in
frame N should be matched with which objects in frame N-1,
The pointers that link objects across frames are established

by PICK.

54




SUPER:

T ANK:

TRAIN:

TRUCK:

UIT:

|
i
k 1 PROTOCOL.:

,» SIMULAT:

used in the debugging mode to test the CPU interface by
exercising the protocol. Standard messages are passed

back and forth between CPUl1l and CPU2 many times.

controls system simulation during checkout with test data

input from floppy disk.

the main program which controls the whole system. SUPER
contains the idle loop where control resides until there is

a command from the operator to do something or until CPU1
sends an interrupt. Flags are checked in this loop to
decide what should be done in response to inputs from these

sources.

cues tanks by superimposing the letter T over the object.
The size of the letter is proportional to the size of the

object.

controls the system during training. The main functions
are to cue each object passed into CPU2 from CPU1 so the
operator can identify them and input the classification
code. Then the object features are output to floppy disk

along with the classification code.

cues trucks by superimposing the letter W over the object.
The size of the letter is proportional to the size of the
object.

cues unidentified targets by superimposing the letter U
over the object. The size of the letter is proportional to

the size of the object.

55




AA CANNON:

cues track-mounted radar controlled anti-aircraft
cannon by superimposing the letter C over the object,

AA LAUNCHER: cues track-mounted anti-aircraft missile launcher by

superimposing the letter M over the object.

56




